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Lecture 2
Asymptotic Notation
and Merge Sort

Overview

* Asymptotic notation
* Insertion sort

* Divide and conquer: merge sort
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Objective

* Understand that efficiency is important
* Learn how to determine algorithm efficiency

* Get familiar with sorting algorithms
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Performance is Important

* Algorithm might run on very large data set

* Be efficient in terms of CPU and memory usage

1. Look at sorting algorithms of different
efficiency

2. Learn how efficiency of algorithm can be
determined

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 3

3



9/8/21

Example

* Imagine you would have to sort an arbitrary
set of numbers, e.g., student IDs
* How would you go about this?

* Are there more or less efficient approaches?
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Asymptotic Analysis of Algorithms

* Algorithm complexity
* Asymptotic analysis
* Practical use

* Code examples

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 5

5



9/8/21

* Need general method for describing complexity

Algorithm Complexity
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* “Big O” notation extracts essence of algorithm
performance

Asymptotic Analysis

* Defines an upper boundary on complexity growth
* Definition: f(x) = O(g(x)) for x->c0
if and only if there is a positive real number m
and a real number x4 such that
f(x) £ m*g(x) for all x>x,
* For all x beyond x,, f(x) is bounded by m*g(x)
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Asymptotic analysis example

* What are g(x), m and x, for our linear search?

linear éearch I I
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Asymptotic analysis example

* m=0.35, x,=5000 (one of many solution)

IinearI search
0.35™n, Ng=5000 -------
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Asymptotic analysis example

* What are g(x), m and x, for our binary search?
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Asymptotic analysis example

* m=26, x,=1000 (one of many solution)
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* Constants and lower degrees are ignored
e Example: n/2 is O(n); 3n%+15n is O(n?)

* Typical classes of complexity
* O(1): constant

O(log n): logarithmic growth

O(n): linear growth

O(n log n): linearithmetic (or loglinear) growth

O(n?): quadratic growth

* O(2"): exponential growth
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Practical use of asymptotic analysis
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Comparison of complexity classes

* Significant differences in trends

* Calculate different example values for n=10
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* What are complexity bounds for these functions?

Examples

* Find tightest upper bound

* Examples
* 0.000001*n%2+15000%*n * (n+log n)?
* n?*n+10 n?log n * n(5+log n)

* 12345 + log 54321 ° 1+2+3+...+n
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* What are complexity bounds for these functions?

Examples

* Find tightest upper bound

* Examples
* 0.000001*n2+15000*n =0(n?) * (n+logn)? = 0(n?)
* n2*n+10 n? log n =0(n3) * n(5+logn) = 0O(n log n)
« 12345 + log 54321 =0(1) * 1+2+43+..+4n  =0(n)
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Code examples

* What is the running time complexity of the
following code example?

i T

//do something
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* What is the running time complexity of the following
code example?

Code examples

//do something

17



9/8/21

Code examples

* What is the running time complexity of the
following code example?

(n):
j (1, n):

//do something
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* What is the running time complexity of the following
code example?

Code examples

//do something
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* What is the running time complexity of the following code
example?

Code examples

j (i):
//do something

20

Insertion Sort

* Sorting is required in many applications
* Examples?
* [dea of insertion sort:
* Insert next element into partially sorted
array
* |terate
* Insertion requires shifting of elements

21
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UMassAmbherst

Assume 54 is a sorted
list of 1 item

L [ 1]
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inserted 26

inserted 93

inserted 17

inserted 77

inserted 44

inserted 55

inserted 20

|
|
|
|
|
|
|
)

] UMassAmbherst
Insertion Sort

Need to insert 31

17 | 26 | 54 | 77 | 93 | 31 | 44 | 55 | 20 back into the sorted list
17 | 26 | 54 | 77 93 | 44 | 55 | 20 et

77531 so shift it
17 | 26 | 54 77 | 93 | 44 | 55 | 20 o the right

54>31 so shift it
17 | 26 54 | 77 | 93 | 44 | 55 | 20  the right
26<31 so insert 31
17 | 26 | 31 | 54 | 77 | 93 | 44 | 55 | 20 in this position
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Insertion Sort

* Write your own code

insertionSort(alist):
index ( (alist)):

//do actual sorting
alist = [

insertionSort(alist)
(alist)

24
UMassAmbherst
Insertion Sort
insertionSort(alist):
index ( (alist)):
currentvalue = alist[index]
position = index
position> alist[position-1]>currentvalue:
alist[position]=alist[position-1]
position = position-
alist[position]=currentvalue
alist = [
insertionSort(alist)
(alist)
25
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Insertion Sort — Analysis

* n-1 passes to sort n item => O(n?)
* In the best case (already sorted list), only one

comparison needed
* In general, shift operation requires 3™ of the

of exchange operation

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

9/8/21

26

26

Growth of processing time

e Algorithms with O(n?) complexity
* 2x problem size, 4x running time

n=5000 n=10000 factor
bubble sort 22.08 104.39 4,73
selection sort 32.35 128.70 3.98
insertion sort 3.76 14.28 3.80
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Comparison
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Merge Sort

* Divide and conquer to improve performance

* Recursive algorithm
e Continually splits list in half
a) Listis empty or has one item => sorted by
definition
b) List has more than one item => split and
recursively involve merge sort
* Merge: taking two smaller lists and combining
them together
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Merge Sort: Split

lSd 26 | 93 17 | 77 | 31 44 | 55 | 20 I

Y

54 | 26 93 17 77 | 31 | l“ 55 | 20 I
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Merge Sort: Merge

Y
26 | 54 17 93 31 |77 [ 20 | 55
\ \ 4
17 | 26 | 54 | 93 | I 20 | 44 | 55 |

20 | 31 | 44 | 55 | 77
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mergeSort(alist):
( alict)

(alist)>

Merge Sort Tl gl (A

righthalf = alist[mid:]

mergeSort(lefthalf)
mergeSort(righthalf)

i=
j=
k=

i< (lefthalf) j < (righthalf)

lefthalf[i] < righthalf[j]:
alist[k]=lefthalf[i]
i=i+

alist[k]=righthalf[j]

=]+
k=k+

i< (lefthalf):
alist[k]=lefthalf[i]
i=i+
k=k+

j < (righthalf):
alist[k]=righthalf[j]
j=j+
k=k+
( alist)

alist = [
mergeSort(alist)
(alist)
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UMassAmbherst
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|
Merge Sort: Split
mergeSort(alist):
( alist)
(alist)>1:

mid = (alist)/
lefthalf = alist[:mid]
righthalf = alist[mid:]
mergeSort(lefthalf)
mergeSort(righthalf)
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17



9/8/21

Merge Sort: Merge

i< (lefthalf) j < (righthalf):
lefthalf[i] < righthalf[j]:
alist[k]=lefthalf[i]

i=i+

alist[k]=righthalf[j]
=3+
k=k+

i< (lefthalf):
alist[k]=lefthalf[i]
i=i+
k=k+

j < (righthalf):
alist[k]=righthalf([j]
=1+
k=k+

alist)

:
Merge Sort — Analysis

e Split: divide a list in half log n times (n = length
of list)

* Merge: Each item processed and placed on
sorted list => n operations.

* O(n log n)

 NOTE:

« function requires extra space to hold the two halves
« additional space a critical factor if list is large (e.qg.,
working on large data sets)
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Next Steps

* Next lecture Thursday
* HW1 due on Thursday
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