9/8/21

UMassAmbherst

The Commonwealth's Flagship Campus

Lecture 2
Asymptotic Notation
and Merge Sort

Overview

* Asymptotic notation
* Insertion sort

* Divide and conquer: merge sort

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 1

9/8/21

Objective

* Understand that efficiency is important
* Learn how to determine algorithm efficiency

* Get familiar with sorting algorithms

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

2

Performance is Important

* Algorithm might run on very large data set

* Be efficient in terms of CPU and memory usage

1. Look at sorting algorithms of different
efficiency

2. Learn how efficiency of algorithm can be
determined

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 3

3

9/8/21

Example

* Imagine you would have to sort an arbitrary
set of numbers, e.g., student IDs
* How would you go about this?

* Are there more or less efficient approaches?

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 4

4

Asymptotic Analysis of Algorithms

* Algorithm complexity
* Asymptotic analysis
* Practical use

* Code examples

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 5

5

9/8/21

* Need general method for describing complexity

Algorithm Complexity

30000

T
linear search
binary search

25000

20000

15000

10000

lookup time in nanoseconds

5000

0 s L L 1 L -
0 20000 40000 60000 80000 100000
ECE 241 — Data Struc size of array (n) 6

6

* “Big O” notation extracts essence of algorithm
performance

Asymptotic Analysis

* Defines an upper boundary on complexity growth
* Definition: f(x) = O(g(x)) for x->c0
if and only if there is a positive real number m
and a real number x4 such that
f(x) £ m*g(x) for all x>x,
* For all x beyond x,, f(x) is bounded by m*g(x)

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 7

7

9/8/21

30000

25000

20000

15000

10000

lookup time in nanoseconds

5000

0

ECE 241 — Data Structures Fall 2021

Asymptotic analysis example

* What are g(x), m and x, for our linear search?

linear éearch I I
1 1 1 1
0 20000 40000 60000 80000 100000

size of array (n)

© 2021 Mike Zink

8

35000

30000

25000

20000

15000

10000

lookup time in nanoseconds

5000

0

ECE 241 — Data Structures Fall 2021

Asymptotic analysis example

* m=0.35, x,=5000 (one of many solution)

IinearI search
0.35™n, Ng=5000 -------

20000 40000 60000 80000 100000
size of array (n)

© 2021 Mike Zink

9

9/8/21

Asymptotic analysis example

* What are g(x), m and x, for our binary search?

700

binary s'earch ' '

600 B
500 B
400 - 4

300 F °

200

lookup time in nanoseconds

100

0 20000 40000 60000
size of array (n)

© 2021 Mike Zink

80000 100000

ECE 241 — Data Structures Fall 2021

10

10

Asymptotic analysis example

* m=26, x,=1000 (one of many solution)

700

b'inary search '
26710g5(n), Ng=1000 -------
600 i

500 —

400 -

300 £ -

200

lookup time in nanoseconds

100

0 1 1 | 1
0 20000 40000 60000 80000

size of array (n)
© 2021 Mike Zink

100000

ECE 241 — Data Structures Fall 2021

11

11

* Constants and lower degrees are ignored
e Example: n/2 is O(n); 3n%+15n is O(n?)

* Typical classes of complexity
* O(1): constant

O(log n): logarithmic growth

O(n): linear growth

O(n log n): linearithmetic (or loglinear) growth

O(n?): quadratic growth

* O(2"): exponential growth
ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

12

9/8/21

Practical use of asymptotic analysis

12

Comparison of complexity classes

* Significant differences in trends

* Calculate different example values for n=10

50 :n T T T T 0(2;) —_—
o(n%) -=-----
[O(nlog n) --------
0 - N . O(n) e
I O(log n) ===
T O(1) =e=sm=-
0 [.
£
20 -
10 -
0 T orepararmamans [[P
10 20 30 40 50
size of problem
ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

13

13

9/8/21

* What are complexity bounds for these functions?

Examples

* Find tightest upper bound

* Examples
* 0.000001*n%2+15000%*n * (n+log n)?
* n?*n+10 n?log n * n(5+log n)

* 12345 + log 54321 ° 1+2+3+...+n

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 14

14

* What are complexity bounds for these functions?

Examples

* Find tightest upper bound

* Examples
* 0.000001*n2+15000*n =0(n?) * (n+logn)? = 0(n?)
* n2*n+10 n? log n =0(n3) * n(5+logn) = 0O(n log n)
« 12345 + log 54321 =0(1) * 1+2+43+..+4n =0(n)
ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 15

15

9/8/21

Code examples

* What is the running time complexity of the
following code example?

i T

//do something

16

* What is the running time complexity of the following
code example?

Code examples

//do something

17

9/8/21

Code examples

* What is the running time complexity of the
following code example?

(n):
j (1, n):

//do something

18

* What is the running time complexity of the following
code example?

Code examples

//do something

19

10

9/8/21

* What is the running time complexity of the following code
example?

Code examples

j (i):
//do something

20

Insertion Sort

* Sorting is required in many applications
* Examples?
* [dea of insertion sort:
* Insert next element into partially sorted
array
* |terate
* Insertion requires shifting of elements

21

11

9/8/21

UMassAmbherst

Assume 54 is a sorted
list of 1 item

L [1]
ELL L [[-]-]
Ll [[<[]
CEEEL [-]+
EEELE -]
CELELET -]
CEL LT
CELEEEL LT
CEELEEELT
ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 22

22

inserted 26

inserted 93

inserted 17

inserted 77

inserted 44

inserted 55

inserted 20

|
|
|
|
|
|
|
)

] UMassAmbherst
Insertion Sort

Need to insert 31

17 | 26 | 54 | 77 | 93 | 31 | 44 | 55 | 20 back into the sorted list
17 | 26 | 54 | 77 93 | 44 | 55 | 20 et

77531 so shift it
17 | 26 | 54 77 | 93 | 44 | 55 | 20 o the right

54>31 so shift it
17 | 26 54 | 77 | 93 | 44 | 55 | 20 the right
26<31 so insert 31
17 | 26 | 31 | 54 | 77 | 93 | 44 | 55 | 20 in this position
ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 23

23

12

9/8/21

Insertion Sort

* Write your own code

insertionSort(alist):
index ((alist)):

//do actual sorting
alist = [

insertionSort(alist)
(alist)

24
UMassAmbherst
Insertion Sort
insertionSort(alist):
index ((alist)):
currentvalue = alist[index]
position = index
position> alist[position-1]>currentvalue:
alist[position]=alist[position-1]
position = position-
alist[position]=currentvalue
alist = [
insertionSort(alist)
(alist)
25

13

Insertion Sort — Analysis

* n-1 passes to sort n item => O(n?)
* In the best case (already sorted list), only one

comparison needed
* In general, shift operation requires 3™ of the

of exchange operation

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink

9/8/21

26

26

Growth of processing time

e Algorithms with O(n?) complexity
* 2x problem size, 4x running time

n=5000 n=10000 factor
bubble sort 22.08 104.39 4,73
selection sort 32.35 128.70 3.98
insertion sort 3.76 14.28 3.80
ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 27

27

9/8/21

Comparison
140 T T T I T
bubble sort
selection sort
120 - insertion sort
2]
= 100 -
8
3
£
g 60
E
b= 40
o
w
20
0 " j i | | | | !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
size of array (n)
ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 28
28

Merge Sort

* Divide and conquer to improve performance

* Recursive algorithm
e Continually splits list in half
a) Listis empty or has one item => sorted by
definition
b) List has more than one item => split and
recursively involve merge sort
* Merge: taking two smaller lists and combining
them together

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 29

29

15

ECE 241 — Data Structures Fall 2021

Merge Sort: Split

lSd 26 | 93 17 | 77 | 31 44 | 55 | 20 I

Y

54 | 26 93 17 77 | 31 | l“ 55 | 20 I

© 2021 Mike Zink

30

9/8/21

30

ECE 241 — Data Structures Fall 2021

Merge Sort: Merge

Y
26 | 54 17 93 31 |77 [20 | 55
\ \ 4
17 | 26 | 54 | 93 | I 20 | 44 | 55 |

20 | 31 | 44 | 55 | 77

© 2021 Mike Zink

31

31

16

mergeSort(alist):
(alict)

(alist)>

Merge Sort Tl gl (A

righthalf = alist[mid:]

mergeSort(lefthalf)
mergeSort(righthalf)

i=
j=
k=

i< (lefthalf) j < (righthalf)

lefthalf[i] < righthalf[j]:
alist[k]=lefthalf[i]
i=i+

alist[k]=righthalf[j]

=]+
k=k+

i< (lefthalf):
alist[k]=lefthalf[i]
i=i+
k=k+

j < (righthalf):
alist[k]=righthalf[j]
j=j+
k=k+
(alist)

alist = [
mergeSort(alist)
(alist)

9/8/21

UMassAmbherst

32
|
Merge Sort: Split
mergeSort(alist):
(alist)
(alist)>1:

mid = (alist)/
lefthalf = alist[:mid]
righthalf = alist[mid:]
mergeSort(lefthalf)
mergeSort(righthalf)

33

17

9/8/21

Merge Sort: Merge

i< (lefthalf) j < (righthalf):
lefthalf[i] < righthalf[j]:
alist[k]=lefthalf[i]

i=i+

alist[k]=righthalf[j]
=3+
k=k+

i< (lefthalf):
alist[k]=lefthalf[i]
i=i+
k=k+

j < (righthalf):
alist[k]=righthalf([j]
=1+
k=k+

alist)

:
Merge Sort — Analysis

e Split: divide a list in half log n times (n = length
of list)

* Merge: Each item processed and placed on
sorted list => n operations.

* O(n log n)

 NOTE:

« function requires extra space to hold the two halves
« additional space a critical factor if list is large (e.qg.,
working on large data sets)

18

9/8/21

Next Steps

* Next lecture Thursday
* HW1 due on Thursday

ECE 241 — Data Structures Fall 2021 © 2021 Mike Zink 36

36

UMassAmbherst

The Commonwealth’s Flagship Campus

19

