
9/8/21

1

Lecture 2
Asymptotic Notation 

and Merge Sort

ECE 241 – Advanced Programming I
Fall 2020

Mike Zink

0

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Overview

1

• Asymptotic notation 
• Insertion sort
• Divide and conquer: merge sort

1



9/8/21

2

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Objective

• Understand that efficiency is important
• Learn how to determine algorithm efficiency
• Get familiar with sorting algorithms

2

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Performance is Important

3

• Algorithm might run on very large data set
• Be efficient in terms of CPU and memory usage

1. Look at sorting algorithms of different 
efficiency

2. Learn how efficiency of algorithm can be 
determined

3



9/8/21

3

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Example

4

• Imagine you would have to sort an arbitrary 
set of numbers, e.g., student IDs
• How would you go about this?
• Are there more or less efficient approaches?

4

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Asymptotic Analysis of Algorithms

5

• Algorithm complexity
• Asymptotic analysis
• Practical use
• Code examples

5



9/8/21

4

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Algorithm Complexity

6

• Need general method for describing complexity

6

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Asymptotic Analysis

7

• “Big O” notation extracts essence of algorithm 
performance

• Defines an upper boundary on complexity growth

• Definition: f(x) = O(g(x)) for x->∞ 
if and only if there is a positive real number m 
and a real number x0 such that
f(x) ≤ m*g(x) for all x>x0

• For all x beyond x0, f(x) is bounded by m*g(x)

7



9/8/21

5

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 8

Asymptotic analysis example

• What are g(x), m and x0 for our linear search? 

8

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 9

Asymptotic analysis example

• m=0.35, x0=5000 (one of many solution)

9



9/8/21

6

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 10

Asymptotic analysis example

• What are g(x), m and x0 for our binary search? 

10

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 11

Asymptotic analysis example

• m=26, x0=1000 (one of many solution)

11



9/8/21

7

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 12

Practical use of asymptotic analysis
• Constants and lower degrees are ignored

• Example: n/2 is O(n); 3n2+15n is O(n2)

• Typical classes of complexity
• O(1): constant

• O(log n): logarithmic growth
• O(n): linear growth

• O(n log n): linearithmetic (or loglinear) growth

• O(n2): quadratic growth

• O(2n): exponential growth

12

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 13

Comparison of complexity classes

• Significant differences in trends
• Calculate different example values for n=10

13



9/8/21

8

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 14

Examples

• What are complexity bounds for these functions?
• Find tightest upper bound

• Examples
• 0.000001*n2+15000*n

• n2*n+10 n2 log n
• 12345 + log 54321

• (n+log n)2

• n(5+log n)

• 1+2+3+…+n

14

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 15

Examples

• What are complexity bounds for these functions?
• Find tightest upper bound

• Examples
• 0.000001*n2+15000*n = O(n2) 

• n2*n+10 n2 log n = O(n3)
• 12345 + log 54321 = O(1)

• (n+log n)2 = O(n2)

• n(5+log n) = O(n log n)

• 1+2+3+…+n = O(n)

15



9/8/21

9

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 16

Code examples

• What is the running time complexity of the 
following code example?

for i in range(n):
//do something

16

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 17

Code examples

• What is the running time complexity of the following 
code example?

for i in range(n):
for j in range(n):
//do something

17



9/8/21

10

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 18

Code examples

• What is the running time complexity of the 
following code example?

for i in range(n):
for j in range(i, n):

//do something

18

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 19

Code examples

• What is the running time complexity of the following 
code example?

for i in range(n/10):
for j in range(i):
//do something

19



9/8/21

11

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 20

Code examples

• What is the running time complexity of the following code 
example?

for i in range(0,n,i=i*2):
for j in range(i):
//do something

20

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Insertion Sort

21

• Sorting is required in many applications
• Examples?
• Idea of insertion sort:
• Insert next element into partially sorted 

array
• Iterate

• Insertion requires shifting of elements

21



9/8/21

12

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Insertion Sort

22

22

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Insertion Sort

23

23



9/8/21

13

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Insertion Sort

24

def insertionSort(alist):
for index in range(1,len(alist)):

//do actual sorting

alist = [54,26,93,17,77,31,44,55,20]
insertionSort(alist)
print(alist)

• Write your own code

24

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Insertion Sort

25

def insertionSort(alist):
for index in range(1,len(alist)):

currentvalue = alist[index]
position = index

while position>0 and alist[position-1]>currentvalue:
alist[position]=alist[position-1]
position = position-1

alist[position]=currentvalue

alist = [54,26,93,17,77,31,44,55,20]
insertionSort(alist)
print(alist)

25



9/8/21

14

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Insertion Sort – Analysis

26

• n-1 passes to sort n item => O(n2)
• In the best case (already sorted list), only one 

comparison needed
• In general, shift operation requires 3rd of the 

of exchange operation

26

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink 27

Growth of processing time

• Algorithms with O(n2) complexity
• 2x problem size, 4x running time

27



9/8/21

15

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Comparison

28

28

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Merge Sort

29

• Divide and conquer to improve performance
• Recursive algorithm

• Continually splits list in half
a) List is empty or has one item => sorted by 

definition
b) List has more than one item => split and 

recursively involve merge sort
• Merge: taking two smaller lists and combining 

them together

29



9/8/21

16

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Merge Sort: Split

30

30

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Merge Sort: Merge

31

31



9/8/21

17

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Merge Sort

32

def mergeSort(alist):
print("Splitting ",alist)
if len(alist)>1:

mid = len(alist)//2
lefthalf = alist[:mid]
righthalf = alist[mid:]

mergeSort(lefthalf)
mergeSort(righthalf)

i=0
j=0
k=0
while i < len(lefthalf) and j < len(righthalf):

if lefthalf[i] < righthalf[j]:
alist[k]=lefthalf[i]
i=i+1

else:
alist[k]=righthalf[j]
j=j+1

k=k+1

while i < len(lefthalf):
alist[k]=lefthalf[i]
i=i+1
k=k+1

while j < len(righthalf):
alist[k]=righthalf[j]
j=j+1
k=k+1

print("Merging ",alist)

alist = [54,26,93,17,77,31,44,55,20]
mergeSort(alist)
print(alist)

split

merge

32

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Merge Sort: Split

33

def mergeSort(alist):
print("Splitting ",alist)
if len(alist)>1:

mid = len(alist)//2
lefthalf = alist[:mid]
righthalf = alist[mid:]

mergeSort(lefthalf)
mergeSort(righthalf)

33



9/8/21

18

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Merge Sort: Merge

34

i=0
j=0
k=0
while i < len(lefthalf) and j < len(righthalf):

if lefthalf[i] < righthalf[j]:
alist[k]=lefthalf[i]
i=i+1

else:
alist[k]=righthalf[j]
j=j+1

k=k+1

while i < len(lefthalf):
alist[k]=lefthalf[i]
i=i+1
k=k+1

while j < len(righthalf):
alist[k]=righthalf[j]
j=j+1
k=k+1

print("Merging ",alist)

34

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Merge Sort – Analysis

35

• Split: divide a list in half log n times (n = length 
of list)
• Merge: Each item processed and placed on 

sorted list => n operations.
• O(n log n)
• NOTE: 

• function requires extra space to hold the two halves 
• additional space a critical factor if list is large (e.g., 

working on large data sets)

35



9/8/21

19

ECE 241 – Data Structures Fall 2021 © 2021 Mike Zink

Next Steps

36

• Next lecture Thursday
• HW1 due on Thursday

36

ECE 241 – Data Structures Fall 2021 © 2018 Mike Zink
37

37


